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Abstract. The Dirac equation with vector plus scalar surface delta interactions supported 
by a sphere is exactly solved for all partial waves and parities. Unlike the relativistic 
one-dimensional delta potentials, surface delta interactions with finite values of the vector 
and scalar coupling constants require a minimum strength to bind particles. Strong scalar 
couplings confine relativistic particles at high energies inside the sphere, while the 
confinement is no longer possible for strong vector potentials. It is also found that the 
potential causes no effects on  the scattering phase shift in the zero-range limit. Therefore, 
the well known Dirac-Kronig-Penney model in one dimension cannot be generalised to 
three-dimensional crystal latrices. 

1. Introduction 

The Fermi contact operator (Fermi 1930) V (  r )  = b8( r )  is usually assumed in perturba- 
tive calculations of thermal neutron scattering with solids (Lovesey 1986). Nevertheless, 
this highly singular operator can only be applied to first order, while second-order 
perturbation energies diverge. This objection is easily overcome by considering a less 
singular potential with some fitting parameters. One of these alternative models was 
introduced by Blinder (1978) who replaced the Fermi contact operator by a surface 
delta-function potential (SDP) 6( r - R ) ,  i.e. a force field vanishing everywhere except 
on a spherical shell of radius R. This 'modified Fermi potential' leads to an exactly 
solvable Schrodinger equation for hyperfine interactions (i.e. SDP plus Coulomb poten- 
tial), in which the nuclear magnetic moment is replaced by a uniformly magnetised 
spherical shell (Blinder 1978). The SDP plus Coulomb potential also gives closed forms 
for a large number of parameters appearing in the theory of potential scattering in 
N N  and Na systems (Kok et a1 1982). Although bound states and resonance properties 
of SDP have been studied early on (Gottefried 1966, Romo 1973), only recently has 
the precise mathematical treatment of the non-relativistic Hamiltonian describing a 
SDP been developed (Antoine et a1 1987). However, the proper treatment of the Dirac 
equation for a SDP has not, to the best of our knowledge, even been developed and 
this problem remains open in the literature. 

Although solutions of the Schrodinger equation for such a potential are obtained 
in a straightforward way, some ambiguities appear in defining the relativistic SDP. 

Similar problems are found when the one-dimensional Dirac equation is solved for 
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potentials of different shapes approaching the delta-function limit, since the eigenfunc- 
tions approach different values at the interaction point (Sutherland and Mattis 1981). 
Recently, McKellar and Stephenson (1987a, b) have circumvented this ambiguity in 
discussing quark-confining properties of nucleons with a Dirac-Kronig-Penney model. 
They have found boundary conditions for the one-dimensional wavefunction of Dirac 
particles moving under the action of pure vector and pure scalar sharply peaked 
potentials. Here vector potential means the time-component of a Lorentz vector while 
scalar potential means a Lorentz scalar. Hence vector potentials are multiplied by the 
same Dirac matrix as the particle energy in the wave equation, and scalar potentials 
could be regarded like a position-dependent mass. Since arbitrarily mixed potentials 
(vector plus scalar) are often considered in particle physics, the results of McKellar 
and Stephenson have been generalised recently in order to include such mixed potentials 
(Dominguez-Adame and Macid 1989a). 

It is our purpose to study the relativistic motion of a particle under the action of 
vector plus scalar S D P ~ .  We fill the gap that has been left in previous works since we 
deal with the Dirac equation rather than the Schrodinger equation. Our treatment 
closely follows the method given by Dominguez-Adame and Maci6 (1989a) to solve 
the one-dimensional Dirac equation for point interaction potentials V( x)  + S (x).  First, 
we introduce a definition of the SDPS which becomes independent of how the delta- 
function limit is taken, so the above-mentioned ambiguities in defining the relativistic 
delta interaction are overcome. This potential is one of the most simple two-parameter 
potentials to be applied in a number of physical problems (see the references of the 
paper by Antoine et a1 (1987)). These two parameters are the radius of the spherical 
shell where the force is non-vanishing and the strength of the force; both parameters 
may be arbitrarily chosen to fit experimental data. Second, we are interested in the 
bound states (if any) and the scattering states of the Dirac equation for such a potential. 
Closed formulae for the phase shift and for the scattering amplitude are derived, for 
all partial waves and spin orientations. Before discussing our conclusions, we study 
in some detail the confining properties of vector plus scalar SDPS. To be specific, we 
would like to know if strong SDPS can confine particles inside the sphere or, on the 
contrary, particles can escape to the outside. This realisation could be interesting in 
order to improve the quark bag model with abrupt walls, since there exists evidence 
for quark tunnelling between close nucleons (Goldman and Stephenson 1984, and 
references therein). Finally, we want to stress that, apart from their purely methodologi- 
cal interest, our results have the virtue of great mathematical simplicity and provide 
a useful way to study relativistic effects in many other physical situations where 
short-range interparticle forces are dominant (solid state, molecular and nuclear 
physics). 

2. Relativistic surface delta-function potential 

We start with the Dirac equation for a particle in a stationary state of energy E 

H V  = EV. (1) 
From the Lorentz covariance of the Dirac equation, we can include in the Hamiltonian 
the time component V of a Lorentz potential and also a Lorentz scalar S potential. 
Therefore, the Hamiltonian reads ( h  = c = 1). 

H = a . p + p ( m + S ) +  V 



The Dirac equation with surface delta interactions 1995 

where 

in which U is the vector Pauli spin matrix and I stands for the 2 x 2  identity matrix. 
Let V and S be surface delta-function potentials, defined as 

V( r) = OF,( r, R)  S (  r) = sF,( r, R)  ( 5 )  

v and s being the potential strengths, and Fv(r, R)  and Fs(r, R)  denoting arbitrary 
functions of r sharply peaked at R, satisfying the limiting conditions 

IRR-*drFv(r, R ) =  I:-+ drF,(r, R ) = l .  

q ( r ) = - (  1 i f ( r )  )Q:,,, 

(6) 

Since the potentials are spherically symmetric, the eigenfunctions of definite parity 
and total angular momentum ( J 2 ,  J , )  are written in the form 

( 7 )  r g ( r ) u . r / r  

where a;,,, are the normalised two-component eigenfunctions of J 2 ,  J,, L2 and S2 
(Bjorken and Drell 1964). The radial part of the Dirac equation (1) for the upper f ( r )  . 
and lower g( r )  components of the radial spinor ( 7 )  is 

[ E + m + S ( r ) -  V(r)]g(r)= -+- f ( r )  (d4 :) 
[ E  - M - S(  r) - V( r)]f( r) = - - + - g (  r). ( d4 :) 

Here K = F ( j + i )  for 1 = j it. After rearranging terms, this first-order coupled equation 
can be written in a closed form as 

&r)  being a 2 x 2 matrix operator expressed in terms of the Pauli matrices as 

K 
h ( r )  = -- u, + [ m  + ~ ( r ) ] u ~  -i[E - v(r)]a,,. (10) r 

Equation (9) is solved by a Neumann solution 

where 9 is the Dyson ordering operator. Considering r = Rt  and ro = R-and using 
( 5 )  and (6), we finally obtain the following boundary conditions (Dominguez-Adame 
and MaciP 1989a): 
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where we have introduced the notation a, = (s st U )  tan( u2 - s ~ ) ” ~ / (  u2 - s ~ ) ” ~ ,  which 
are always real parameters. Some remarks must be stressed at this point. First, one 
can easily check that equation (12) reduces to the usual non-relativistic boundary 
conditions for the SDP (Fliigge 1970) in the weak-coupling limit as the particle mass 
becomes large. However, this assertion is no longer valid for strong coupling, where 
relativistic treatment is indeed required. On the other hand, boundary conditions 
become periodic for pure vector SDP ( U  # 0, s = 0) since a, = *tan U, while the periodic- 
ity is broken for pure scalar ones (s # 0, U = 0), where a, = tanh s. These differences 
completely determine the confining properties of vector and scalar SDP. Also note that 
If( , + ) I 2  = If( R-)12 and 1g( R+)12 = Ig( R-)12 as U = n7r and s = 0 (here n denotes any 
arbitrary integer). Therefore, these special values of the vector coupling have no effect 
on the particle wavefunction, and then the potential becomes transparent to all energies, 
no matter how strong the interaction is. A similar anomalous behaviour is also found 
in dealing with one-dimensional vector delta-function potentials (Sutherland and Mattis 
1981). Finally, we should comment that the obtained boundary condtions remain valid 
even if one includes additional potentials in the radial Dirac equation, whenever these 
potentials are less singular than the SDP at r = R. 

3. Bound and scattering states 

Now we search for the solution of the radial Dirac equation with the boundary 
conditions given in (12). Without loss of validity, we confine ourselves to positive 
values of the particle energy throughout this paper. For r # R we can decouple equation 
(8) to obtain 

g ( r )  = (E + m)-‘ r # R  

r #  R 

where p = + ( E 2  - m2)’/‘ and we have used the result K ( K  + 1) = l ( I +  1). Solutions of 
equation (13b) can be written in terms of spherical Bessel and Neumann functions j ,  
and n,. Since f( r )  must vanish at the origin, we readily find 

and using the recurrence relations for Bessel and Neumann functions, we have from 
equation ( 1 3 4  that 

where 1 ’=2 j - l ,  A ,  is the scattering amplitude and 6, is the phase shift. The inside 
and outside solutions are connected through equation (12); one can easily solve for 
the phase shift and the scattering amplitude to obtain 
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and 

where Bessel and Neumann functions are evaluated at pR. 
The S-matrix can be directly computed from the scattering phase shift as S,  = 

exp(2ii3,) = (1 + i tan a,)/( 1 -i  tan 8,). Poles of S,  lying along the positive imaginary 
axis in the complex p plane will correspond to bound states of the SDP. These poles 
are given through the following transcendental equation: 

(17) 

where q = +(m2- E 2 ) ’ l 2  and h, = j, +in,. This equation has to be solved by the usual 
search method for any arbitrary value of the angular momentum 1. We may ask for 
the minimum potential ‘size’ (if any) that can bind at least one state of angular 
momentum 1. The solution to this problem is found by means of the Levinson theorem 
for Dirac particles (Ma and Ni 1985, Arshansky and Horwitz 1989); the potential 
possesses n positive bound states whenever 8 , (p+ 0) = n r .  On the other hand, an 
alternative and more explicit way to obtain conditions for particle binding is achieved 
by expanding equation (17) near E G m ( q  + O+).  In so doing, we easily find that the 
potential parameters must satisfy 

- q  = (m+E)a+j , ( iqR)h , ( iqR)+(m - E ) a  -j,,(iqR)h,,(iqR) 

- a+/a -a  (21+ 1)/2mRa- (18) 
for binding a particle with energy somewhat below m. This is in contrast to the 
one-dimensional delta-function potential, where at least one bound state always exists 
(Dominguez-Adame and Macii 1.989a). One can observe that condition (18) is indepen- 
dent of the value of j, so that the same potential can bind two particles with different 
j and the same 1 = j * i .  There is a sublety of condition (18) that we must point out. 
This condition reduces to -4muR 3 21 + 1 for equally mixed potentials ( a ,  = 2u, a- = 0), 
in exact correspondence with the non-relativistic SDP. This result comes from the fact 
that the Dirac equation reduces to a Schrodinger-like equation for the upper component 
of the wavefunction when the scalar potential is equal to the vector potential. 

Having disposed of the bound states, we now examine the scattering solutions for 
strong vector and scalar couplings. As mentioned above, these considerations will be 
useful in studying particle confinement at high energies. To do this, let us start with 
the scattering amplitude (16) at high energy ( E  - p). The numerator is simply written 
as sin( ER + 8, - l r / 2 )  sin( ER + 8, - 1 ‘ ~ / 2 ) ,  while the denominator becomes 

j,i,,[cos2(u2 - s2)1/2 - sin2( U’ - s2)1/2] 

+ ( - 1 ) J - / + l / 2  [s(j:+j?.)+ u ( j ? - j ? , ) ]  s ~ ~ [ ~ ( u ~ - s ~ ) ~ / ~ ] / [ ~ ( u ~ - s ’ ) ~ ’ ~ ]  
(19) 

with the asymptotic limiting behaviour j,( ER) = sin( ER - / r /2 ) .  Hence the numerator 
as well as the denominator of the scattering amplitude (16) are smooth functions of 
the energy as E >> m. It is an easy matter to verify that we can make expression (19) 
as large as we please whenever Is1 3 [U(, so the amplitude of the particle wavefunction 
inside a sphere of radius R vanishes for strong scalar coupling. On the contrary, 
expression (19) remains bounded as [ V I  > IsI, even for the limit U + CO. The latter is 
another manifestation of the Klein paradox for strong vector potentials. The relativistic 
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particle may undergo a tunnelling process from a positive- to a negative-energy state 
and can go into the sphere. Therefore, concerning confining properties, SDP are quite 
similar to one-dimensional delta-functions (Dominguez-Adame and Macid 1989a). 
We should stress that confining properties do not depend on the sign of the coupling 
constants at all. 

The SDP admits an effective range expansion 

(20) 

where the scattering length a, and the effective range r, for s states ( I C  = -1) are given 
by 

a - ,  = 2 m R 2 a + / (  1 + 2 m R a + ) ,  

r - l  = (1 + 2 m R a _ / 3 ) / 8 m 3 R 2 a , .  (21b) 

For an equally mixed potential ( s  = v )  we have a - ,  = m R 2 v / (  1 + m R v ) ,  which 
approaches R (hard-sphere limit) as U + 00. The scattering length becomes a- ,  = 
2mR2 f (1 + 2 m R )  for strong scalar coupling, i.e. a hard sphere with an effective radius 
depending on 
the particle mass. In the non-relativistic limit, however, a - ,  approaches the expected 
value R. 

4. Conclusions 

Some conclusions may be drawn from the above results. The Dirac equation with 
vector plus scalar SDP admits exact solutions for all partial waves; boundary conditions 
are found fully analogous to previous treatments of the one-dimensional relativistic 
delta-function potentials (Dominguez-Adame and MaciA 1989a). This enables us to 
study the effects of higher angular momenta on the bound and scattering states. The 
extension to a superposition of several SDP with different radii and strengths is 
straightforward; this multisphere potential would admit one positive bound level, 
provided that the signs of the coupling constants are appropriately chosen and the 
radii are large enough, for each single SDP entering the potential (Kok et a1 1982). 
We have found that SDP requires a minimum ‘size’ for binding particles, unlike the 
one-dimensional delta-function potential. In the vanishing-radius limit R + 0, the SDP 

has no effect on the phase shift (see equation (10)); therefore, we come to the conclusion 
that the local function 6(  r )  has no sense in three dimensions, according to the suggestion 
of Avron and Grossmann (1976), so the Dirac-Kronig-Penney model (Dominguez- 
Adame 1989, and references therein) cannot be generalised to three-dimensional 
crystals. 

In dealing with scattering solutions, we have demonstrated that scalar potentials 
stronger than (or just equal to) vector potentials act like an impenetrable spherical 
wall in the infinite-coupling-constant limit, so a particle of any angular momentum 
inside the sphere will remain there indefinitely. On the contrary, confinement becomes 
impossible for strong vector coupling due to the Klein paradox. Finally, let us comment 
that some other potentials could be added to the SDP in straightforward manner since 
boundary condition (12) still remains valid. In this way, the relativistic singular 
harmonic-oscillator potential ( Dominguez-Adame and MaciP 1989b) in one dimension 
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is easily generalised to three dimensions, based on the harmonic-oscillator quark model 
of Ravndal (1982). Consequently, the effects of a short-ranged potential on the 
relativistic harmonic-oscillator spectroscopy can be exactly evaluated for all partial 
waves, an interesting result in quark physics at small distances. Also, the model of 
Kok et a1 (1982) for charge-particle scattering by SDP plus Coulomb potential may be 
improved using the Dirac equation instead of the Schrodinger equation. Hence rela- 
tivistic corrections in nuclear reactions involving high-energy particles are easily calcu- 
lated in a non-perturbative way. 
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